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- RESEARCH MEMORANDUM

A PIVOTIKG-COWL-AND-SPIKE TECHNIQUE FOR EFFICIENT
ANGLE-OF-ATTACK OPERATION OF SUPERSONIC INIETS*

By Nick E. Samanich and Robert W. Cubbison

SUMMARY

A technique to obtain efficient inlet performance over an angle-of-
attack range at supersonic Mach numbers has been investigated. The sys-
tem utilizes a pilvoting spike and attached cowl-lip shell to mgintain
inlet alinement with the airstream at a2ll attitudes. Two isentropic com~
pression gpikes of 35° and 39° total turning were examined with the pivot-
ing system. Critical pressure recovery of the 35° compression spike inlet
was essentially constant at 77 percent with only & 2-percent logss in masgs-~
flow ratio and a maximum distortion value of 7 percent when the nacelle
angle of attack was increased fram O° to 14° at the design free-stream
Mach number of 3.0. Peak pressure recoveries of 80 and 86 percent were
obtained at Mach 3.0 with the 35° and 39° compression spike inlets, re-
spectively. Performance parameters at Mach numbers of 2.0 and 2.5 are
also presented.

INTRODUCTTON

Optimum performance over an angle-of-attack range is desirable for
all types of aircraft and, in scme cases, essential (for highly maneuver-
able aircraft). For high Mach numbers (greater than 2.0) a multicam-
pression surface is usually required to give acceptable inlet performance,
and the shock structure emanating fram such & surface usually determines
the cowl-lip location for optimum performance at zero angle of attack.
Iarge decreases in Internal performance have been experienced by conven-
tional fixed-geometry inlet systems operating at angle of attack and may
be attributed to (l) the shock system no longer being on-design but fall-
ing inside or outside the inlet or both and cesusing flow disturbances
along with a reduction in capture mass flow and (2) asymmetric flow enter-
ing the inlet.

*Pitle, Unclassified.

fics D i Ay




. st "4 "
2 E%Eiiéé;&ﬁﬁ§¥§§£!i NACA RM ES8G1lla

A number of techniques to alleviate the adverse flow conditions
caused by conventlionsl inlets operating at angle of attack have been
made at low supersonic Mach numbers (refs. 1 to 7). All these tech-
_niques had some compromlses in their designs, which resulted in unfa-
vorable inlet flow conditions in same region of their angle-of-attack
range. Higher design Mach numbers would probably amplify the penalties
assoclated wlth these compromises.

A cowl-lip shell attached to a plvoting spike, the cambination
capable of alinement with the alrstream direction, has the desirable
characteristic of being on-design at all engles of attack. This report
presents the results of an investigation in which this technique was
incorporated in the design of a high-performance Mach number 3.0 inlet
tested at Mach numbers of 2.0, 2.5, and 3.0, a Reynolds number of 2.5x108
per foot, and over an angle-of-attack range from 0° to 140,

SYMBOIS
Ain inlet capture ares, 1.183 sq £t
Amax maximum projected frontel area of model, 1.483 sq ft
A, ares normel to flow direction in duct
Az diffuser-exit flow area, 0.961 sg Tt
Cp drag coefficient, D/qoA .
D drag
M Mach number
mz/m, _ inlet mass-flow ratio, pzVaAz/PoVoAi,
P total pressure
Pz/Pg total-pressure recovery

distortion paremeter .

P3
a | dynamic pressure . ;_
v velocity S P
X distance along axis of symmetry
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o angle of attack, deg

91 cowl-position parameter, angle between axis of symmetry
and line from spike tip to cowl lip, deg

p density of air

Subscripts:

e external

mex meximum

min minimum

0 conditions in free stream

3 conditions at diffuser exit

Superscript:

—_ area-welghted value

APPARATUS AND PROCEDURE

A photograph of the test model at angle of attack with the inlet
alined with the free-stream direction is shown in figure 1. The test
vehicle, & 16.46-inch-diameter, 102-inch-long model, had a movable exit
plug to control the back pressure., Provislons for spike translation, as
well as inlet pivoting, were also Incorporated. Forces were measured
with an internal strain-gage balance. A schematic drawing of the test
model, with a cutaway view of the pivoting inlet, 1s shown in figure 2.

Two isentropic spikes were designed fram the method of reference 8
to have focused compression at Mach 3,0 with total turning of 35° and
390, corresponding to a 6; = 23,65° for both spikes. The cowl shell

had e sharp-edged lip with 32° and 29° external and intermal lip angles,
respectively, (for both spikes) and a projected area 20 percent of the
maximum Prontal area. The cowl lip was attached to the spike with three
aerodynamically contoured struts. -The spike-cowl shell combination was
remotely pivoted with an internally housed screw Jack. All the pivoting
components that had metal-to-metal contact were of spherical design to
permit rotation sbout a fixed center with a minimum of air leakage. The

spikes were designed with the capabllity of l% inches of remotely

e rmmi
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controlled translation in the constant-dilameter portion of the center-
body immedistely aft of the splke shoulder. This deslign permitied splike
translation regardless of the splke-cowl shell angular position.

The bleed systems used wlth the 35° and 39° campression spike in-
lets are shown in detaill in figure 3. The bleed mass flow was ducted
out from the centerbody through two hollow étruts and ejected to the
alrstream through two reverse~facing semiconical outlets located on the
outer skin of the model (see fig. 1).

Total-pressure instrumentation was located at stations 1.8, 6.4,
and 68 inches from the cowl lip. The total-pressure recovery was ob-
tained from an area-welghted average of 48 total-pressure probes at
station 68. The mass-flow ratio was calculated using the static pres-
sure at station 68 and the assumption of isentropic flow to a choked
area gt the plug exit.

The geometry of the pivoting inlet components dictated the initial
portion of the diffuser design. The internal area veristion for optimum
performance calculated fram experimental date by the method of refer-
ence 9 at Mach numbers of 2.0, 2.5, and 3.0 with respective cowl-position
parameters of 24,4009, 24.25C, and 23.65° 1s presented in figure 4.

The investigation was conducted in the Lewls 10- by 10-foot super-
sonic wind tunnel at free-stream Mach numbers of 2.0, 2.5, and 3.0 and
& Reynolds number of 2.5X106 per foot.

RESULTS AND DISCUSSION

Performence of the 35° compression spike inlet configuration at
zero angle of attack over a Mach number range and at several cowl-
position parameters is presented in figure 5. The Mach 3.0 on-design
performance of the 35° compression inlet ylelded a critical pressure re-
covery of 0.78, a drag coefficlent of 0.15, and a distortion of 0.0Z2.
Only a small percentage of subcritical stebility was noted at Mach 3.0.
During operation in the unsteble reglon, & static-pressure fluctuation
as high as 65 percent of the free-stream totael pressure was recorded at
the campressor face. A bleed mass flow of approximately S5 percent of
the inlet capture flow wes removed from the spike surface at all the
Mach numbers with the bleed system. Losses in total pressure through
the diffuser at zero angle of attack near critical inlet operation are
shown in figure 6. Elghty percent of the losses occurred in the initial
10 percent of the diffuser,

The performence of the inlet with pivoting cowl and spike as com-
pared to the conventional fixed-geometry inlet is presented ln figure 7

€908
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at & free-stream Mach number of 3.0 and a cowl-position parameter of
23,600, The nacelle angle of attack could be increased from 0° to 14°
with essentially no loss in critical pressure recovery (0.77) and with
only & 0,02 loss in mass-flow ratio and a relatively slight increase in
the distortion parameter (0.0l to 0.07). ILosses of 0.1l, 0.30, and 0.33
in eritiecal pressure recovery, accompanied by respective losses of 0,01,
0.06, and 0.20 in mass-flow raetio, resulted when the fixed-geometry non-~
pivoted inlet was tested at angles of attack of 5°, 10°, and 14°.

The effect of adding 4° of external compression to the 35° spike
resulted in marginally better performance, however, the peak pressure
recovery was increased from 80 to 86 percent. Figure 8(a) shows the
performance of the 39° campression inlet at zero angle of attack over a
range of cowl-position parameters, end figure 8(b) shows the effect of
pivoting the cowl and spike through an angle-of-attack range. The re-
sults of the 39° compression inlet with pivoting (fig. 8(b)) were similar
to those with the 35° compression inlet, which substantiates the effec-
tiveness of the plvoting technique at angle of attack.

Figure 9 is a summary plot deplcting the effect of angle of attack
on the critical inlet performance with and without inlet pivoting at a
Mach number of 3.0. In all cases where inlet pivoting was employed, the
unfavorable effects assoclated with a conventional fixed-geametry inlet
operating at angle of attack were virtually eliminated. It thus gppears
that the sharp turn occasioned by the pivoted cowl and spike in the sub-
sonic portion of the diffuser had relatively little effect on the per-
formance of this type of inlet and that all the adverse effects of angle
of attack produced by the supersonic diffuser can be eliminated by alin-
ing only a short portion of the nacelle with the free stream. Although
drag data at angle of attack are not presented, the drag increment be-
tween the pivoted and nonpivoted configurations was & very small portion
of the over-all nacelle drag and was within the accuracy of the balance
measurements.

Total-pressure contours of the pivoted and nonplvoted 350 compres-
sion inlets et the diffuser exit for neer critical operation over an
angle-of-gttack range are presented in figure 10. At all angles of
attack, distortion was markedly reduced when the pivotimg technique was
employed. The largest degree of improvement in flow distortion along
with elimination of any flow separation zones was noted at 10° and 14°
engles of attack where distortions of 0.22 and 0,36 were reduced to Q.04
and 0,05, respectively, when inlet pivoting was employed.

Shock patterns at the inlet face at various Mach numbers and angles
of attack with and without inlet pivoting are shown in the schlieren
photographs in figure 11. Close examination of the shock structure at
the design Mach number revealed the initial conical shock to be lying
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slightly ahead of the coalescence of the week shocks emanating fram the
isentropic surface. This shock orientation accounted for about 0.03
loss in mass-flow ratio when the inlet was operdting on-design

(6, = 23.85°).

SUMMARY OF RESULIS

A pivoting-cowl-and-spike technique for efflcient angle-of-attack
operation of supersonic inlets has been investigated with the following
results at the design Mach number of 3.0:

l. There was essentially no loss in critical total-pressure re-
covery (0.77), only a 2-percent loss in mass-flow ratio, and & meximum
distortion value of 0.07 when employlng the pivoting 35° compression
gplke inlet over the model angle-of-attack range of 0° to 14°.

2. Pesk pressure recoveries of 80 and 86 percent were obtained with
the 35° and 39° compression spike inlets » respectively.

Iewis FPlight Propulsion Laboratory
National Advisory Commlttee for Aerocnautics
Cleveland, Ohio, July 16, 1958
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Figure 1. - Test model insteiled in 10- by 10-foot supersonic tumel.
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External mass-flow ratio, mz/mg

(a) Pree-stream Mach (b) Free-stream Mach
number, 2.0. number, " 2.5.

{¢) Free-stream Mach
number, 3.0.

Figure 5. - Internal and external performance over a Mach number range of 359 compression spike inlet

at zero angle of attack and varlous values of cowl-positlon parameter.
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available et inlet Llip

Percent loss of total pressure

Total-pressure
recovery,
P[Py

13

\
\

.90

N

.80 £
0 .2 ot .6 .8 1.0
Retio of axial distence from cowl 1ip to total diffuser length

Figure 6. - ILocation of total-pressure losses in subsonic dif-
Puser for neer critical operation at zero sngle of attack.
Free-stream Mach nmumber, 3.0; cowl-position parameter, 23,60°,
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ance of 35° compression spike configuration with
and without inlet-splke pivoting at a free-stream
Mach number of 3.0 and a cowl-position parameter
of 23.60°.
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Figure 8. - Effect of cowl-position parameter and engle of attack on
performance of 39° compression spike inlet at free-stream Mach

number of 3.0. . )
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Figure 9. - Effect of angle of attack on performance with and with-

out inlet pivoting during critical Mach 3.0 operation.
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Angle of atteck, 0°; total- Angle of attack, 59; total-
pregsure recovery, 0.79 pressure recovery, 0.68

0.50
.52
x .54 *

Digtortion, 0.22 P

Angle of attack, 10°; total- Angle of attack, 14°; total-
pressure recovery, 0.51 pressure recovery, 0.45

(2} Without pivoting.

Figure 10, - Total-pressure contours at diffuser exit for neer critlcal operation for
35° compression inlet with and without pivoting at free-gtreem Mach number of 3,0,
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Angle of attack, 0°; total- - Angle of attack, 59; total-
pressure recovery, 0.79 Tressure recovery, 0.79

Angle of attack, 109; total- Angle of attack, 140, total-
preasure recovery, 0.79 pregsure recovery, 0,77

(b) With pivoting.

Figurs 10, ~ Concluded, Total-pressure contours at diffuser exit for near critical
operation for 35° compression lnlet with and without pivoting at free-siream Mach

number of 3.0,
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Free-stream Mach number, 2.0 Free-stream Mach number, 2.5

Free-stream Mach number, 3.0

(a) Inlet operated supercritically at zero angle of attack over Mach number range
Investigated.

Figure 1l. - Schlleren photographs of 35° compresslon splke inlet.
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Angle of attack, 5°; unpivoted

' ig-a8830

Angle of attack, 5°; pivoted Angle of attack, lO°; pivoted

(b) Inlet operated with and without inlet pivoting at several angles of attack.
Free-stream Mach number, 3.0.

Figure 11. - Concluded. Schlieren photographs of 35° compression spike inlet.

NACA - Langley Fleld, Va.
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POTES: (1) Reynolds mmber is based on the diamster
of a airele with the seme ares as that
of the capture ares of the inlet.

(2) The aymbol # denotes the occwrremce of
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